TY - GEN
T1 - Learning high-order task relationships in multi-task learning
AU - ZHANG, Yu
AU - Yeung, Dit Yan
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - Multi-task learning is a way of bringing inductive transfer studied in human learning to the machine learning community. A central issue in multi-task learning is to model the relationships between tasks appropriately and exploit them to aid the simultaneous learning of multiple tasks effectively. While some recent methods model and learn the task relationships from data automatically, only pairwise relationships can be represented by them. In this paper, we propose a new model, called Multi- Task High-Order relationship Learning (MTHOL), which extends in a novel way the use of pairwise task relationships to high-order task relationships. We first propose an alternative formulation of an existing multi-task learning method. Based on the new formulation, we propose a high-order generalization leading to a new prior for the model parameters of different tasks. We then propose a new probabilistic model for multi-task learning and validate it empirically on some benchmark datasets.
AB - Multi-task learning is a way of bringing inductive transfer studied in human learning to the machine learning community. A central issue in multi-task learning is to model the relationships between tasks appropriately and exploit them to aid the simultaneous learning of multiple tasks effectively. While some recent methods model and learn the task relationships from data automatically, only pairwise relationships can be represented by them. In this paper, we propose a new model, called Multi- Task High-Order relationship Learning (MTHOL), which extends in a novel way the use of pairwise task relationships to high-order task relationships. We first propose an alternative formulation of an existing multi-task learning method. Based on the new formulation, we propose a high-order generalization leading to a new prior for the model parameters of different tasks. We then propose a new probabilistic model for multi-task learning and validate it empirically on some benchmark datasets.
UR - http://www.scopus.com/inward/record.url?scp=84896061461&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84896061461
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1917
EP - 1923
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -