TY - GEN
T1 - Learning a discriminative sparse tri-value transform
AU - Qui, Zhenhua
AU - Qiu, Guoping
AU - Yuen, Pong Chi
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2008
Y1 - 2008
N2 - Simple binary patterns have been successfully used for extracting feature representations for visual object classification. In this paper, we present a method to learn a set of discriminative tri-value patterns for projecting high dimensional raw visual inputs into a low dimensional subspace for tasks such as face detection. Unlike previous methods that use predefined simple transform bases to generate tens of thousands features first and then use nlachine learning to select the most useful features, our method attempts to learn discriminative transform bases directly. Since it would be extremely hard to develop analytical solutions, we define an objective function that can be solved using simulated annealing. To reduce the search space, we impose sparseness and smoothness constraints on the transform bases. Experimental results demonstrate that our method is effective and provides an alternative approach to effective visual object class-fication.
AB - Simple binary patterns have been successfully used for extracting feature representations for visual object classification. In this paper, we present a method to learn a set of discriminative tri-value patterns for projecting high dimensional raw visual inputs into a low dimensional subspace for tasks such as face detection. Unlike previous methods that use predefined simple transform bases to generate tens of thousands features first and then use nlachine learning to select the most useful features, our method attempts to learn discriminative transform bases directly. Since it would be extremely hard to develop analytical solutions, we define an objective function that can be solved using simulated annealing. To reduce the search space, we impose sparseness and smoothness constraints on the transform bases. Experimental results demonstrate that our method is effective and provides an alternative approach to effective visual object class-fication.
UR - http://www.scopus.com/inward/record.url?scp=77957933548&partnerID=8YFLogxK
M3 - Conference proceeding
AN - SCOPUS:77957933548
SN - 9781424421756
T3 - Proceedings - International Conference on Pattern Recognition
BT - 2008 19th International Conference on Pattern Recognition, ICPR 2008
T2 - 2008 19th International Conference on Pattern Recognition, ICPR 2008
Y2 - 8 December 2008 through 11 December 2008
ER -