Abstract
Distribution shifts over time are common in real-world machine-learning applications. This scenario is formulated as Evolving Domain Generalization (EDG), where models aim to generalize well to unseen target domains in a time-varying system by learning and leveraging the underlying evolving pattern of the distribution shifts across domains. However, existing methods encounter challenges due to the limited number of timestamps (every domain corresponds to a timestamp) in EDG datasets, leading to difficulties in capturing evolving dynamics and risking overfitting to the sparse timestamps, which hampers their generalization and adaptability to new tasks. To address this limitation, we propose a novel approach SDE-EDG that collects the Infinitely Fined-Grid Evolving Trajectory (IFGET) of the data distribution with continuous-interpolated samples to bridge temporal gaps (intervals between two successive timestamps). Furthermore, by leveraging the inherent capacity of Stochastic Differential Equations (SDEs) to capture continuous trajectories, we propose their use to align SDE-modeled trajectories with IFGET across domains, thus enabling the capture of evolving distribution trends. We evaluate our approach on several benchmark datasets and demonstrate that it can achieve superior performance compared to existing state-of-the-art methods.
| Original language | English |
|---|---|
| Title of host publication | The Twelfth International Conference on Learning Representations |
| Publisher | International Conference on Learning Representations, ICLR |
| Number of pages | 26 |
| Publication status | Published - May 2024 |
| Event | 12th International Conference on Learning Representations, ICLR 2024 - Messe Wien Exhibition and Congress Center, Vienna, Austria Duration: 7 May 2024 → 11 May 2024 https://iclr.cc/Conferences/2024 (Conference website) https://iclr.cc/virtual/2024/calendar (Conference schedule ) https://openreview.net/group?id=ICLR.cc/2024/Conference#tab-accept-oral (Conference proceedings) |
Publication series
| Name | Proceedings of the International Conference on Learning Representations, ICLR |
|---|
Conference
| Conference | 12th International Conference on Learning Representations, ICLR 2024 |
|---|---|
| Country/Territory | Austria |
| City | Vienna |
| Period | 7/05/24 → 11/05/24 |
| Internet address |
|