Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

Sara M. Willems, Daniel J. Wright, Felix R. Day, Katerina Trajanoska, Peter K. Joshi, John A. Morris, Amy M. Matteini, Fleur C. Garton, Niels Grarup, Nikolay Oskolkov, Anbupalam Thalamuthu, Massimo Mangino, Jun Liu, Ayse Demirkan, Monkol Lek, Liwen Xu, Guan Wang, Christopher Oldmeadow, Kyle J. Gaulton, Luca A. LottaEri Miyamoto-Mikami, Manuel A. Rivas, Tom White, Po Ru Loh, Mette Aadahl, Najaf Amin, John R. Attia, Krista Austin, Beben Benyamin, Soren Brage, Yu Ching Cheng, Paweł Cięszczyk, Wim Derave, Karl Fredrik Eriksson, Nir Eynon, Allan Linneberg, Alejandro Lucia, Myosotis Massidda, Braxton D. Mitchell, Motohiko Miyachi, Haruka Murakami, Sandosh Padmanabhan, Ashutosh Pandey, Ioannis Papadimitriou, Deepak K. Rajpal, Craig Sale, Theresia M. Schnurr, Francesco Sessa, Nick Shrine, Martin D. Tobin, GEFOS Any-Type of Fracture Consortium, Yannis Pitsiladis, Noriyuki Fuku, Paul W. Franks, Kathryn N. North, Cornelia M. van Duijn, Karen A. Mather, Torben Hansen, Ola Hansson, Tim Spector, Joanne M. Murabito, J. Brent Richards, Fernando Rivadeneira, Claudia Langenberg, John R. B. Perry, Nick J. Wareham*, Robert A. Scott*

*Corresponding author for this work

    Research output: Contribution to journalJournal articlepeer-review

    140 Citations (Scopus)

    Abstract

    Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P<5 × 10−8) in combined analyses. A number of these loci contain genes implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip strength and the causal role of muscular strength in age-related morbidities and mortality.

    Original languageEnglish
    Article number16015
    Number of pages12
    JournalNature Communications
    Volume8
    DOIs
    Publication statusPublished - 12 Jul 2017

    Fingerprint

    Dive into the research topics of 'Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness'. Together they form a unique fingerprint.

    Cite this