TY - JOUR
T1 - Large-Pore Mesoporous-Silica-Assisted synthesis of high-performance ZnGa2O4:Cr3+/Sn4+@MSNs multifunctional nanoplatform with optimized optical probe mass ratio and superior residual pore volume for improved bioimaging and drug delivery
AU - Gao, Yi Fan
AU - Zou, Rui
AU - Chen, Guang Feng
AU - Liu, Bo Mei
AU - Zhang, Yong
AU - Jiao, Ju
AU - Wong, Ka-Leung
AU - Wang, Jing
N1 - Funding Information:
Financial supports from the NSFC (81871417, 51772336, 51702373 and 51961145101), the Joint Funds of the National Natural Science Foundation of China and Yunnan Province (U1902222), Key-Area Research and Development Program of Guangdong Province (2019B010926001), Guangzhou Science & Technology Project (202007020005, 201807010104 and 201802020033), Guangdong Science & Technology Project (2017A020215024), the Natural Science Foundation of Guangdong Province (2018A030313919, 2016A030313245), the Fundamental Research Funds for the Central Universities (19ykpy19), and the Hong Kong Research Grants Council (HKBU 12300318) are gratefully appreciated.
PY - 2021/9/15
Y1 - 2021/9/15
N2 - Featured with excellent biocompatibility and background-free biomedical imaging, near infrared persistent luminescence (NIR-PersL) nanomaterials synthesized by mesoporous silica nanoparticles (MSNs) template have captured increasing attentions to be as a tumor theranostic nanoplatform. Unfortunately, many researches in the past decades have mainly focused on bioimaging performance of NIR-PersL nanomaterials themselves but not synergistically on tailoring the pore volume of the MSNs to optimize the drug loading/releasing performance, which greatly limits their potential application in tumor theranostics. In this work, we propose a tailorable large-pore mesoporous-silica-assisted synthesis strategy to synthesize a series of ZnGa2O4:Cr3+/Sn4+@MSNs (ZGOCS@MSNs) NIR-PersL nanospheres as nanoplatform. The ZGOCS@MSNs possess average diameters of ~ 80 nm. More interestingly, the mass ratio of ZGOCS to MSNs (MRZM) increases with the increasing of pore sizes of MSNs and the NIR-PersL performances of ZGOCS@MSNs enhance with the increase of MRZM, suggesting that MRZM plays an important role in optimizing NIR-PersL performance of the nanospheres. In vitro and in vivo NIR-PersL imaging further confirm the MRZM-dependent performance enhancement in NIR-PersL nanospheres. More importantly, the employment of large pore MSNs maintains the mesoporous structure of NIR-PersL nanospheres and the residual pore volume of ZnGa2O4:Cr3+/Sn4+@MSNs is high enough and available for efficient drug loading/releasing. Benefited from excellent rechargeable tumor NIR-PersL imaging ability and large residual cavities, ZGOCS@MSNs show high dose (~53%) of loading DOX and exhibit outstanding cancer cell killing efficiency, implying the MRZM also plays an important role in optimizing the drug loading/releasing performance of the nanospheres. In summary, the as-synthesized high performance ZnGa2O4:Cr3+/Sn4+@MSNs bi-functional nanoplatform showcases its great potential for imaging-guided cancer chemotherapy. We expect our work could take the development of NIR-PersL-based theranostic nanoplatforms a step forward.
AB - Featured with excellent biocompatibility and background-free biomedical imaging, near infrared persistent luminescence (NIR-PersL) nanomaterials synthesized by mesoporous silica nanoparticles (MSNs) template have captured increasing attentions to be as a tumor theranostic nanoplatform. Unfortunately, many researches in the past decades have mainly focused on bioimaging performance of NIR-PersL nanomaterials themselves but not synergistically on tailoring the pore volume of the MSNs to optimize the drug loading/releasing performance, which greatly limits their potential application in tumor theranostics. In this work, we propose a tailorable large-pore mesoporous-silica-assisted synthesis strategy to synthesize a series of ZnGa2O4:Cr3+/Sn4+@MSNs (ZGOCS@MSNs) NIR-PersL nanospheres as nanoplatform. The ZGOCS@MSNs possess average diameters of ~ 80 nm. More interestingly, the mass ratio of ZGOCS to MSNs (MRZM) increases with the increasing of pore sizes of MSNs and the NIR-PersL performances of ZGOCS@MSNs enhance with the increase of MRZM, suggesting that MRZM plays an important role in optimizing NIR-PersL performance of the nanospheres. In vitro and in vivo NIR-PersL imaging further confirm the MRZM-dependent performance enhancement in NIR-PersL nanospheres. More importantly, the employment of large pore MSNs maintains the mesoporous structure of NIR-PersL nanospheres and the residual pore volume of ZnGa2O4:Cr3+/Sn4+@MSNs is high enough and available for efficient drug loading/releasing. Benefited from excellent rechargeable tumor NIR-PersL imaging ability and large residual cavities, ZGOCS@MSNs show high dose (~53%) of loading DOX and exhibit outstanding cancer cell killing efficiency, implying the MRZM also plays an important role in optimizing the drug loading/releasing performance of the nanospheres. In summary, the as-synthesized high performance ZnGa2O4:Cr3+/Sn4+@MSNs bi-functional nanoplatform showcases its great potential for imaging-guided cancer chemotherapy. We expect our work could take the development of NIR-PersL-based theranostic nanoplatforms a step forward.
KW - Bioimaging
KW - Drug delivery
KW - Mesoporous silica
KW - Near-infrared
KW - Persistent luminescence
UR - http://www.scopus.com/inward/record.url?scp=85104911830&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.130021
DO - 10.1016/j.cej.2021.130021
M3 - Journal article
AN - SCOPUS:85104911830
SN - 1385-8947
VL - 420, Part 1
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 130021
ER -