Abstract
Breakthrough advances in chemistry and biology over the last two decades have vastly expanded the repertoire of nucleic acid structure and function with potential application in multiple areas of science and technology, including sensing and analytical applications. DNA oligonucleotides represent popular tools for the development of sensing platforms due to their low cost, rich structural polymorphism, and their ability to bind to cognate ligands with sensitivity and specificity rivaling those for protein enzymes and antibodies. In this review, we give an overview of the “label-free” approach that has been a particular focus of our group and others for the construction of luminescent DNA-based sensing platforms. The label-free strategy aims to overcome some of the drawbacks associated with the use of covalently-labeled oligonucleotides prevalent in electrochemical and optical platforms. Label-free DNA-based probes harness the selective interaction between luminescent dyes and functional oligonucleotides that exhibit a “structure-switching” response upon binding to analytes. Based on the numerous examples of label-free luminescent DNA-based probes reported recently, we envisage that this field would continue to thrive and mature in the years to come.
Original language | English |
---|---|
Pages (from-to) | 3427-3440 |
Number of pages | 14 |
Journal | Chemical Society Reviews |
Volume | 42 |
Issue number | 8 |
DOIs | |
Publication status | Published - 25 Mar 2013 |
Scopus Subject Areas
- Chemistry(all)