Abstract
Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.
Original language | English |
---|---|
Article number | 7196 |
Number of pages | 16 |
Journal | International Journal of Molecular Sciences |
Volume | 25 |
Issue number | 13 |
DOIs | |
Publication status | Published - 1 Jul 2024 |
Scopus Subject Areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
User-Defined Keywords
- abiotic stress
- bioinformatic analysis
- EPF/EPFL
- gene family
- hormone
- maize