Integrating the Budyko framework with the emerging hot spot analysis in local land use planning for regulating surface evapotranspiration ratio

Ping Yu Fan, Kwok Pan Chun*, Ana Mijic, Mou Leong Tan, Omer Yetemen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Land use planning regulates surface hydrological processes by adjusting land properties with varied evapotranspiration ratios. However, a dearth of empirical spatial information hampers the regulation of place-specific hydrological processes. Therefore, this study proposed a Local Land Use Planning framework for EvapoTranspiration Ratio regulations (ETR-LLUP), which was tested for the developments of spatially-varied land use strategies in the Dongjiang River Basin (DRB) in Southern China. With the first attempt at integrating the Emerging Hot Spots Analysis (EHSA) with the Budyko framework, the spatiotemporal trends of evapotranspiration ratios based on evaporative index and dryness index, from 1992 to 2018, were illustrated. Then, representative land-cover types in each sub-basin were defined using Geographically Weighted Principal Component Analysis, in two wet years (1998 and 2016) and three dry years (2004, 2009, and 2018), which in turn were identified using the Standard Precipitation Index. Finally, Geographically Weighted Regressions (GWRs) were used to detect spatially-varied relationships between land-cover proportions and evaporative index in both dry and wet climates. Results showed that the DRB was consistently a water-limited region from 1992 to 2018, and the situation was getting worse. We also identified the upper DRB as hotspots for hydrological management. Forests and croplands experienced increasingly water stress compared to other vegetation types. More importantly, the spatial results of GWR models enabled us to adjust basin land use by 1) expanding and contracting a combination of ‘mosaic natural vegetation’ and ‘broadleaved deciduous trees’ in the western and eastern parts of the basin, respectively; and 2) increasing ‘broadleaved evergreen trees’ in the upstream parts of the basin. These spatially-varied land use strategies based on the ETR-LLUP framework allow for place-specific hydrological management during both dry and wet climates.

Original languageEnglish
Article number115232
JournalJournal of Environmental Management
Volume316
Early online date13 May 2022
DOIs
Publication statusPublished - 15 Aug 2022

Scopus Subject Areas

  • Waste Management and Disposal
  • Management, Monitoring, Policy and Law
  • Environmental Engineering

User-Defined Keywords

  • Budyko framework
  • Dry and wet climates
  • Evapotranspiration ratio
  • Land use strategies
  • Spatially-varied

Fingerprint

Dive into the research topics of 'Integrating the Budyko framework with the emerging hot spot analysis in local land use planning for regulating surface evapotranspiration ratio'. Together they form a unique fingerprint.

Cite this