Abstract
Let $A$ be a non-trival abelian group. A connected simple graph $G = (V, E)$ is $A$-antimagic if there exists an edge labeling $f: E(G) \to A \setminus \{0\}$ such that the induced vertex labeling $f^+: V(G) \to A$, defined by $f^+(v) = \sum_{uv\in E(G)}f(uv)$, is injective. The integer-antimagic spectrum of a graph $G$ is the set IAM$(G) = \{k\;|\; G \textnormal{ is } \mathbb{Z}_k\textnormal{-antimagic and } k \geq 2\}$. In this article, we determine the integer-antimagic spectra of tadpole and lollipop graphs.
Original language | English |
---|---|
Pages (from-to) | 5-22 |
Number of pages | 18 |
Journal | Congressus Numerantium |
Volume | 225 |
Publication status | Published - 2015 |