Abstract
Background: Candida albicans (C. albicans) invasion triggers antifungal innate immunity, and the elevation of cytoplasmic Ca2+ levels via the inositol 1,4,5-trisphosphate receptor (InsP3R) plays a critical role in this process. However, the molecular pathways linking the InsP3R-mediated increase in Ca2+ and immune responses remain elusive.
Results: In the present study, we find that during C. albicans phagocytosis in macrophages, exocyst complex component 2 (SEC5) promotes InsP3R channel activity by binding to its C-terminal α-helix (H1), increasing cytosolic Ca2+ concentrations ([Ca2+]c). Immunofluorescence reveals enriched InsP3R-SEC5 complex formation on phagosomes, while disruption of the InsP3R-SEC5 interaction by recombinant H1 peptides attenuates the InsP3R-mediated Ca2+ elevation, leading to impaired phagocytosis. Furthermore, we show that C. albicans infection promotes the recruitment of Tank-binding kinase 1 (TBK1) by the InsP3R-SEC5 interacting complex, leading to the activation of TBK1. Subsequently, activated TBK1 phosphorylates interferon regulatory factor 3 (IRF-3) and mediates type I interferon responses, suggesting that the InsP3R-SEC5 interaction may regulate antifungal innate immune responses not only by elevating cytoplasmic Ca2+ but also by activating the TBK1-IRF-3 pathway.
Conclusions: Our data have revealed an important role of the InsP3R-SEC5 interaction in innate immune responses against C. albicans.
Original language | English |
---|---|
Article number | 46 |
Journal | BMC Biology |
Volume | 16 |
DOIs | |
Publication status | Published - 27 Apr 2018 |
Scopus Subject Areas
- Biotechnology
- Structural Biology
- Ecology, Evolution, Behavior and Systematics
- Physiology
- General Biochemistry,Genetics and Molecular Biology
- General Agricultural and Biological Sciences
- Plant Science
- Developmental Biology
- Cell Biology
User-Defined Keywords
- Antifungal innate immune response
- Exocyst complex component 2 (SEC5)
- Inositol 1,4,5-trisphosphate receptors (InsP3R)
- Tank-binding kinase 1 (TBK1)