TY - JOUR
T1 - Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs
T2 - Kinetics, environmental factors and products
AU - Chen, Ping
AU - Zhang, Qianxin
AU - Shen, Lingzhi
AU - Li, Ruobai
AU - Tan, Cuiwen
AU - Chen, Tiansheng
AU - Liu, Haijin
AU - Liu, Yang
AU - CAI, Zongwei
AU - Liu, Guoguang
AU - Lv, Wenying
N1 - Funding Information:
The authors wish to thank the National Natural Science Foundation of China ( 21677040 ), the China Postdoctoral Science Foundation (No. 2017M620796 ), and the Science and Technology Planning Project of Guangdong Province ( 2017A050506052 ).
PY - 2019/2
Y1 - 2019/2
N2 - In recent years, how to effectively remove emerging organic pollutants in water bodies has been studied extensively, especially in the actual complex water environment. In the present study, an effective wastewater treatment system that combined photocatalysis and an oxidizing agent was investigated. Specifically, visible-light driven reduced graphene oxide (RGO)/TiO2 composites were prepared, and peroxodisulfate (PDS) was used as electron acceptor to accelerate the photocatalytic activity of this material. The vis-RGO/TiO2/PDS system exhibited outstanding properties in the degradation of diclofenac (DCF), which was also facilitated by acidic conditions and Cl−. Lake water, tap water, river water and HCO3− decreased the DCF degradation rate, while NO3− affected the system only slightly. Low concentrations of fulvic acid (FA) promoted the degradation of DCF via the generation of excited states, whereas a high concentration of FA inhibited the degradation, which was likely due to the light screening effect. The photocatalytic mechanism revealed that PDS served as an electron acceptor for the promotion of electron-hole pair separation and the generation of additional reactive oxygen species, while the RGO served as an electric conductor. The active substances, h+, [rad]OH, 1O2, SO4[rad]- and O2[rad]- were generated in this system, O2[rad]- and h+ played significant roles in the degradation of DCF based electron spin resonance tests and radical quenching results. According to the mass spectrometry results, the amide bond cleavage, dechlorination reaction, hydroxyl addition reaction, and decarboxylation reaction were the primary transformative pathways.
AB - In recent years, how to effectively remove emerging organic pollutants in water bodies has been studied extensively, especially in the actual complex water environment. In the present study, an effective wastewater treatment system that combined photocatalysis and an oxidizing agent was investigated. Specifically, visible-light driven reduced graphene oxide (RGO)/TiO2 composites were prepared, and peroxodisulfate (PDS) was used as electron acceptor to accelerate the photocatalytic activity of this material. The vis-RGO/TiO2/PDS system exhibited outstanding properties in the degradation of diclofenac (DCF), which was also facilitated by acidic conditions and Cl−. Lake water, tap water, river water and HCO3− decreased the DCF degradation rate, while NO3− affected the system only slightly. Low concentrations of fulvic acid (FA) promoted the degradation of DCF via the generation of excited states, whereas a high concentration of FA inhibited the degradation, which was likely due to the light screening effect. The photocatalytic mechanism revealed that PDS served as an electron acceptor for the promotion of electron-hole pair separation and the generation of additional reactive oxygen species, while the RGO served as an electric conductor. The active substances, h+, [rad]OH, 1O2, SO4[rad]- and O2[rad]- were generated in this system, O2[rad]- and h+ played significant roles in the degradation of DCF based electron spin resonance tests and radical quenching results. According to the mass spectrometry results, the amide bond cleavage, dechlorination reaction, hydroxyl addition reaction, and decarboxylation reaction were the primary transformative pathways.
KW - Environmental factors
KW - Mechanism
KW - Peroxodisulfate
KW - Photocatalysis
UR - http://www.scopus.com/inward/record.url?scp=85055982249&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2018.10.096
DO - 10.1016/j.chemosphere.2018.10.096
M3 - Journal article
C2 - 30384303
AN - SCOPUS:85055982249
SN - 0045-6535
VL - 216
SP - 341
EP - 351
JO - Chemosphere
JF - Chemosphere
ER -