TY - JOUR
T1 - Indigo Naturalis Suppresses Colonic Oxidative Stress and Th1/Th17 Responses of DSS-Induced Colitis in Mice
AU - Xiao, Haitao
AU - Peng, Jiao
AU - Wen, Bo
AU - Hu, Dong dong
AU - Hu, Xiao peng
AU - Shen, Xiang chun
AU - Liu, Zhi gang
AU - He, Zhen dan
AU - Bian, Zhaoxiang
N1 - Funding Information:
This research was Xiao and supported by the National Natural Science Foundation of China (No.81560676), the Peacock Program for Overseas High-Level Talents of Shenzhen, the launching fund of the Scientific Research for New Teachers of Shenzhen University (no. 2018020), and the Shenzhen Science and Technology Innovation Committee Grant (No. JCYJ20170413170320959) and partly supported by the National Key R&D Program of China (No.2017YFA053900) and the National Natural Science Foundation of China (Nos. 31670360 and U1702286).
PY - 2019/10/13
Y1 - 2019/10/13
N2 - Indigo naturalis (also known as Qing-dai, or QD), a traditional Chinese medicine, has been widely used as an anticolitis regimen in the clinical practice of Chinese medicine. However, the precise mechanisms behind its efficacy remain unknown. We investigated the protective effects and associated molecular mechanisms of QD in DSS-induced colitis in mice. We found that QD administration attenuated DSS-induced colon shortening, tissue damage, and the disease activity index during the onset of colitis. Moreover, QD administration significantly suppressed colonic MPO activity and increased the activities of colonic T-SOD, CAT, and GSH-Px, as well the expression of p-AMPK and Nrf-2 in colon tissues of colitic mice. In addition, QD was capable of reducing the colonic Th1 and Th17 cell cytokines, the frequencies of Th1 and Th17 cells, and the phosphorylation of p-STAT1 and p-STAT3 in the mesenteric lymph nodes of colitic mice. An in vitro assay showed that QD significantly suppressed the differentiation of Th1 and Th17 cells. These findings suggest that QD has the potential to alleviate experimental colitis by suppressing colonic oxidative stress and restraining colonic Th1/Th17 responses, which are associated with activating AMPK/Nrf-2 signals and inhibiting STAT1/STAT3 signals, respectively. These findings also support QD as an effective regimen in the treatment of IBD.
AB - Indigo naturalis (also known as Qing-dai, or QD), a traditional Chinese medicine, has been widely used as an anticolitis regimen in the clinical practice of Chinese medicine. However, the precise mechanisms behind its efficacy remain unknown. We investigated the protective effects and associated molecular mechanisms of QD in DSS-induced colitis in mice. We found that QD administration attenuated DSS-induced colon shortening, tissue damage, and the disease activity index during the onset of colitis. Moreover, QD administration significantly suppressed colonic MPO activity and increased the activities of colonic T-SOD, CAT, and GSH-Px, as well the expression of p-AMPK and Nrf-2 in colon tissues of colitic mice. In addition, QD was capable of reducing the colonic Th1 and Th17 cell cytokines, the frequencies of Th1 and Th17 cells, and the phosphorylation of p-STAT1 and p-STAT3 in the mesenteric lymph nodes of colitic mice. An in vitro assay showed that QD significantly suppressed the differentiation of Th1 and Th17 cells. These findings suggest that QD has the potential to alleviate experimental colitis by suppressing colonic oxidative stress and restraining colonic Th1/Th17 responses, which are associated with activating AMPK/Nrf-2 signals and inhibiting STAT1/STAT3 signals, respectively. These findings also support QD as an effective regimen in the treatment of IBD.
UR - http://www.scopus.com/inward/record.url?scp=85074295106&partnerID=8YFLogxK
U2 - 10.1155/2019/9480945
DO - 10.1155/2019/9480945
M3 - Journal article
C2 - 31737179
AN - SCOPUS:85074295106
SN - 1942-0900
VL - 2019
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 9480945
ER -