Abstract
Purpose: Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have emerged as contaminants of environmental concerns because they pose potential risks to human and animal health. The purpose of this study was to investigate the in vitro metabolism of OH-PBDEs and their potential inhibition against 17β-estradiol (E2) metabolism. Methods: Rat liver microsomes were used as a source of P450 enzymes in an in vitro metabolism study of OH-PBDEs. Inhibition of E2 metabolism and kinetic study were performed by incubating with rat liver microsomes in the presence of OH-PBDEs. Results: The obtained data clearly demonstrated that OH-PBDEs, especially those congeners with lower bromination, could be metabolized to bromophenol and diOH-PBDEs. The less metabolic rate of OH-PBDEs was observed with the increasing number of bromine substituents. OH-PBDEs with hydroxyl group and bromine adjacent to the ether bridge showed faster metabolic rates. In addition, the results showed non-competitive inhibition of E2 metabolism by OH-PBDEs with IC50 values in the range from 13. 7 to 55. 2 μM. The most potent OH-PBDE inhibitor was found to be 3′-OH-BDE-100. The inhibitory potencies for OH-PBDEs were significantly higher than those of parent PBDE and methoxylated metabolites, providing the evidence that PBDEs exerted estrogenic activity in part by their hydroxylated metabolites. Conclusions: OH-PBDEs exhibited large differences in their capacity to be metabolized and to inhibit E2 metabolism in rat liver microsomes. The finding might increase our understanding of healthy risk associated with PBDEs in human and wildlife.
Original language | English |
---|---|
Pages (from-to) | 3219-3227 |
Number of pages | 9 |
Journal | Environmental Science and Pollution Research |
Volume | 19 |
Issue number | 8 |
DOIs | |
Publication status | Published - Sept 2012 |
Scopus Subject Areas
- Environmental Chemistry
- Pollution
- Health, Toxicology and Mutagenesis
User-Defined Keywords
- 17β-Estradiol metabolism
- diOH-PBDEs
- Hydroxylated PBDEs
- Inhibition
- LC-MS
- Metabolic rate