Abstract
Main conclusion: The work offers a comprehensive evaluation on the phylogenetics and conservation of splicing patterns of the plant SPF30 splicing factor gene family. In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genome-wide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.
Original language | English |
---|---|
Pages (from-to) | 1997–2014 |
Number of pages | 18 |
Journal | Planta |
Volume | 249 |
Issue number | 6 |
Early online date | 23 Mar 2019 |
DOIs | |
Publication status | Published - 1 Jun 2019 |
Scopus Subject Areas
- Genetics
- Plant Science
User-Defined Keywords
- Alternative splicing
- Evolution
- Expression pattern
- Phylogenetic analysis
- Spliceosome
- Splicing factor