Hyperspectral image classification using wavelet transform-based smooth ordering

Lina Yang, Hailong Su*, Cheng Zhong, Zuqiang Meng, Huiwu Luo, Xichun Li, Yuan Yan Tang, Yang Lu

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

105 Citations (Scopus)

Abstract

To efficiently improve the accuracy of hyperspectral image (HSI) classification, the spatial information is usually fused with spectral information so that the classification performance can be enhanced. In this paper, we propose a new classification method called wavelet transform-based smooth ordering (WTSO). WTSO consists of three main components: wavelet transform for feature extraction, spectral–spatial based similarity measurement, smooth ordering based 1D embedding, and construction of final classifier using interpolation scheme. Specifically, wavelet transform is first imposed to decompose the HSI signal into approximate coefficients (ACs) and details coefficients (DCs). Then, to measure the similar level of pairwise samples, a novel metric is defined on the ACs, where the spatial information serves as the prior knowledge. Next, according to the measurement results, smooth ordering is applied so that the samples are aligned in a 1D space (called 1D embedding). Finally, since the reordering samples are smooth, the labels of test samples can be recovered using the simple 1D interpolation method. In the last step, in order to reduce the bias and improve accuracy, the final classifier is constructed using multiple 1D embeddings. The use of wavelet transform in WTSO can also reduce the high dimensionality of HSI data. By converting the hight-dimensional samples into a 1D ordering sequence, WTSO can reduce the computational cost, and simultaneously perform classification for the test samples. Note that in WTSO, the smooth ordering based 1D embedding and interpolation are executed in an iterative manner. And they will be terminated after finite steps. The proposed method is experimentally demonstrated on two real HSI datasets: IndianPines and University of Pavia, achieving promising results.
Original languageEnglish
Article number1950050
JournalInternational Journal of Wavelets, Multiresolution and Information Processing
Volume17
Issue number6
Early online date19 Jul 2019
DOIs
Publication statusPublished - Nov 2019

User-Defined Keywords

  • feature extraction
  • HSI classification
  • smooth interpolation
  • smooth ordering
  • Wavelet transform

Fingerprint

Dive into the research topics of 'Hyperspectral image classification using wavelet transform-based smooth ordering'. Together they form a unique fingerprint.

Cite this