Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization

Xiyou Fu, Sen Jia*, Lina Zhuang, Meng Xu, Jun Zhou, Qingquan Li

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

72 Citations (Scopus)

Abstract

Due to the importance in many military and civilian applications, hyperspectral anomaly detection has attracted remarkable interest. Low-rank representation (LRR)-based anomaly detectors use the low-rank property to represent background pixels, and pixels that cannot be well represented are detected as anomalies. The ability of an LRR-based detector to separate background pixels and anomalous pixels depends on the dictionary representation ability, which usually can be enhanced by designing a proper prior for dictionary representation coefficients and constructing a better dictionary. However, it is not easy to handcraft effective and meaningful regularizers for dictionary coefficients. In this article, we propose a novel anomaly detection algorithm that uses a plug-and-play prior for representation coefficients and constructs a new dictionary based on clustering. Instead of cumbersomely handcrafting a regularizer for representation coefficients, we propose solving the anomaly detection problem using the plug-and-play framework, which enables us to plug state-of-the-art priors for representation coefficients. An effective convolutional neural network (CNN) denoiser is plugged into our framework to fully exploit the spatial correlation of representation coefficients. We also propose a modified background dictionary construction method, which carefully includes background pixels and excludes anomalous pixels from clustering results. We refer to the proposed anomaly detection method as plug-and-play denoising CNN regularized anomaly detection (DeCNN-AD) method. Extensive experiments were performed on five data sets in a comparison with eight state-of-the-art anomaly detection methods. The experimental results suggest that the proposed method is effective in anomaly detection and can produce better anomaly detection results than that of the comparison methods. The codes of this work will be available at https://github.com/FxyPd for the sake of reproducibility.

Original languageEnglish
Pages (from-to)9553-9568
Number of pages16
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume59
Issue number11
Early online date20 Jan 2021
DOIs
Publication statusPublished - Nov 2021

Scopus Subject Areas

  • Electrical and Electronic Engineering
  • Earth and Planetary Sciences(all)

User-Defined Keywords

  • Anomaly detection
  • convolutional neural network (CNN) denoiser
  • dictionary construction
  • hyperspectral image (HSI)
  • plug-and-play.

Fingerprint

Dive into the research topics of 'Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization'. Together they form a unique fingerprint.

Cite this