Hydro-climatic changes of wetlandscapes across the world

I. Åhlén*, G. Vigouroux, G. Destouni, J. Pietroń, N. Ghajarnia, J. Anaya, J. Blanco, S. Borja, S. Chalov, K. P. Chun, N. Clerici, A. Desormeaux, P. Girard, O. Gorelits, A. Hansen, F. Jaramillo, Z. Kalantari, A. Labbaci, L. Licero-Villanueva, J. LivseyG. Maneas, K. L.Mc Curley Pisarello, D. Moshir Pahani, S. Palomino-Ángel, R. Price, C. Ricaurte-Villota, L. Fernanda Ricaurte, V. H. Rivera-Monroy, A. Rodriguez, E. Rodriguez, J. Salgado, B. Sannel, S. Seifollahi-Aghmiuni, M. Simard, Y. Sjöberg, P. Terskii, J. Thorslund, D. A. Zamora, J. Jarsjö

*Corresponding author for this work

    Research output: Contribution to journalJournal articlepeer-review

    16 Citations (Scopus)

    Abstract

    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.

    Original languageEnglish
    Article number2754
    JournalScientific Reports
    Volume11
    Issue number1
    DOIs
    Publication statusPublished - Feb 2021

    Scopus Subject Areas

    • General

    Fingerprint

    Dive into the research topics of 'Hydro-climatic changes of wetlandscapes across the world'. Together they form a unique fingerprint.

    Cite this