Human face recognition using PCA on wavelet subband

G. C. Feng*, Pong Chi YUEN, D. Q. Dai

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

145 Citations (Scopus)


Together with the growing interest in the development of human and computer interface and biometric identification, human face recognition has become an active research area since early 1990. Nowadays, principal component analysis (PCA) has been widely adopted as the most promising face recognition algorithm. Yet still, traditional PCA approach has its limitations: poor discriminatory power and large computational load. In view of these limitations, this article proposed a subband approach in using PCA -apply PCA on wavelet subband. Traditionally, to represent the human face, PCA is performed on the whole facial image. In the proposed method, wavelet transform is used to decompose an image into different frequency subbands, and a midrange frequency subband is used for PCA representation. In comparison with the traditional use of PCA, the proposed method gives better recognition accuracy and discriminatory power; further, the proposed method reduces the computational load significantly when the image database is large, with more than 256 training images. This article details the design and implementation of the proposed method, and presents the encouraging experimental results.

Original languageEnglish
Pages (from-to)226-233
Number of pages8
JournalJournal of Electronic Imaging
Issue number2
Publication statusPublished - Apr 2000

Scopus Subject Areas

  • Atomic and Molecular Physics, and Optics
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Human face recognition using PCA on wavelet subband'. Together they form a unique fingerprint.

Cite this