Abstract
All the existing multi-task local learning methods are defined on homogeneous neighborhood which consists of all data points from only one task. In this paper, different from existing methods, we propose local learning methods for multitask classification and regression problems based on heterogeneous neighborhood which is defined on data points from all tasks. Specifically, we extend the κ- nearest-neighbor classifier by formulating the decision function for each data point as a weighted voting among the neighbors from all tasks where the weights are task-specific. By defining a regularizer to enforce the task-specific weight matrix to approach a symmetric one, a regularized objective function is proposed and an efficient coordinate descent method is developed to solve it. For regression problems, we extend the kernel regression to multi-task setting in a similar way to the classification case. Experiments on some toy data and real-world datasets demonstrate the effectiveness of our proposed methods.
Original language | English |
---|---|
Title of host publication | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 |
Editors | C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger |
Publisher | Neural Information Processing Systems Foundation |
Number of pages | 9 |
ISBN (Print) | 9781632660244 |
Publication status | Published - Dec 2013 |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: 5 Dec 2013 → 10 Dec 2013 https://neurips.cc/Conferences/2013 https://proceedings.neurips.cc/paper/2013 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 26 |
ISSN (Print) | 1049-5258 |
Name | NeurIPS Proceedings |
---|
Conference
Conference | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 |
---|---|
Country/Territory | United States |
City | Lake Tahoe, NV |
Period | 5/12/13 → 10/12/13 |
Internet address |
Scopus Subject Areas
- Computer Networks and Communications
- Information Systems
- Signal Processing