TY - JOUR
T1 - Helical complexes of chiral quaterpyridines - Mononuclear CuII and dinuclear CuI complexes
AU - Yeung, Ho Lun
AU - Sham, Kiu Chor
AU - Wong, Wai Yeung
AU - Wong, Chun Yuen
AU - Kwong, Hoi Lun
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/11
Y1 - 2011/11
N2 - Two series of chiral helical copper-quaterpyridine complexes were prepared by reacting chiral ligands L1-4 with CuI and CuII precursors. The CuII complexes, [Cu(L)(H2O)(ClO 4)2] or [Cu(L)(ClO4)2], were studied by ESI-MS, elemental analysis, and CD spectroscopy, and the CuI complexes, [Cu2(L)2](PF6)2, were examined by NMR, ESI-MS, elemental analysis, and CD spectroscopy. The crystal structures of [Cu(L1)(H2O)(ClO4)](ClO4) and [Cu(L3)(ClO4)2] were determined by X-ray diffraction. They are monomeric, distorted octahedral complexes with the quaterpyridine ligand coordinated at the four equatorial positions and one or two perchlorates at the apical position. The crystal structure of [Cu(L1m)(H2O)(ClO 4)](ClO4), which has an achiral quaterpyridine ligand L1m, the meso form of L1, was also determined. Comparison between [Cu(L1)(H 2O)(ClO4)](ClO4) and [Cu(L1m)(H 2O)(ClO4)](ClO4) shows small differences between the two structures. CD analyses of mononuclear CuII complexes of sterically demanding L2-4 indicate that these structures require a helical twist in the ligand. The crystal structure of [Cu2(L3) 2](PF6)2 shows that it is a two-metal two-ligand double-stranded helical structure. Solution NMR studies of the dinuclear CuI complexes show that each sample consists of two diastereomers with moderate to high diastereoselectivity (52-99 %). With L1m, head-to-head and head-to-tail configurational isomers were formed in an almost 1:1 ratio. Heterostranded helicates could also be formed with two different chiral ligands but selectivity favors the homostranded one. DFT calculations on the homostranded helicates yield evidence that interactions between the chiral groups of the ligand strands in the helicate are not solely responsible for determining the helical chirality of the CuI complexes.
AB - Two series of chiral helical copper-quaterpyridine complexes were prepared by reacting chiral ligands L1-4 with CuI and CuII precursors. The CuII complexes, [Cu(L)(H2O)(ClO 4)2] or [Cu(L)(ClO4)2], were studied by ESI-MS, elemental analysis, and CD spectroscopy, and the CuI complexes, [Cu2(L)2](PF6)2, were examined by NMR, ESI-MS, elemental analysis, and CD spectroscopy. The crystal structures of [Cu(L1)(H2O)(ClO4)](ClO4) and [Cu(L3)(ClO4)2] were determined by X-ray diffraction. They are monomeric, distorted octahedral complexes with the quaterpyridine ligand coordinated at the four equatorial positions and one or two perchlorates at the apical position. The crystal structure of [Cu(L1m)(H2O)(ClO 4)](ClO4), which has an achiral quaterpyridine ligand L1m, the meso form of L1, was also determined. Comparison between [Cu(L1)(H 2O)(ClO4)](ClO4) and [Cu(L1m)(H 2O)(ClO4)](ClO4) shows small differences between the two structures. CD analyses of mononuclear CuII complexes of sterically demanding L2-4 indicate that these structures require a helical twist in the ligand. The crystal structure of [Cu2(L3) 2](PF6)2 shows that it is a two-metal two-ligand double-stranded helical structure. Solution NMR studies of the dinuclear CuI complexes show that each sample consists of two diastereomers with moderate to high diastereoselectivity (52-99 %). With L1m, head-to-head and head-to-tail configurational isomers were formed in an almost 1:1 ratio. Heterostranded helicates could also be formed with two different chiral ligands but selectivity favors the homostranded one. DFT calculations on the homostranded helicates yield evidence that interactions between the chiral groups of the ligand strands in the helicate are not solely responsible for determining the helical chirality of the CuI complexes.
KW - Circular dichroism
KW - Copper
KW - Helical structures
KW - Quaterpyridine ligands
UR - http://www.scopus.com/inward/record.url?scp=81255207316&partnerID=8YFLogxK
U2 - 10.1002/ejic.201100630
DO - 10.1002/ejic.201100630
M3 - Journal article
AN - SCOPUS:81255207316
SN - 1434-1948
SP - 5112
EP - 5124
JO - European Journal of Inorganic Chemistry
JF - European Journal of Inorganic Chemistry
IS - 33
ER -