HARP: A practical projected clustering algorithm

Kevin Y. Yip, David W. Cheung, Michael K. Ng

Research output: Contribution to journalJournal articlepeer-review

138 Citations (Scopus)

Abstract

In high-dimensional data, clusters can exist in subspaces that hide themselves from traditional clustering methods. A number of algorithms have been proposed to Identify such projected clusters, but most of them rely on some user parameters to guide the clustering process. The clustering accuracy can be seriously degraded If incorrect values are used. Unfortunately, in real situations, it is rarely possible for users to supply the parameter values accurately, which causes practical difficulties in applying these algorithms to real data. In this paper, we analyze the major challenges of projected clustering and suggest why these algorithms need to depend heavily on user parameters. Based on the analysis, we propose a new algorithm that exploits the clustering status to adjust the internal thresholds dynamically without the assistance of user parameters. According to the results of extensive experiments on real and synthetic data, the new method has excellent accuracy and usability. It outperformed the other algorithms even when correct parameter values were artificially supplied to them. The encouraging results suggest that projected clustering can be a practical tool for various kinds of real applications.

Original languageEnglish
Pages (from-to)1387-1397
Number of pages11
JournalIEEE Transactions on Knowledge and Data Engineering
Volume16
Issue number11
DOIs
Publication statusPublished - 4 Oct 2004

Scopus Subject Areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

User-Defined Keywords

  • Bioinformatics
  • Clustering
  • Data mining
  • Mining methods and algorithms

Fingerprint

Dive into the research topics of 'HARP: A practical projected clustering algorithm'. Together they form a unique fingerprint.

Cite this