Abstract
In molecular self-assembly, hundreds of thousands of freely-diffusing molecules associate to form ordered and functional architectures in the absence of an actuator. This intriguing phenomenon plays a critical role in biology and has become a powerful tool for the fabrication of advanced nanomaterials. Due to the limited spatial and temporal resolutions of current experimental techniques, computer simulations offer a complementary strategy to explore self-assembly with atomic resolution. Here, we review recent computational studies focusing on both thermodynamic and kinetic aspects. As we shall see, thermodynamic approaches based on modeling and statistical mechanics offer initial guidelines to design nanostructures with modest computational effort. Computationally more intensive analyses based on molecular dynamics simulations and kinetic network models (KNMs) reach beyond it, opening the door to the rational design of self-assembly pathways. Current limitations of these methodologies are discussed. We anticipate that the synergistic use of thermodynamic and kinetic analyses based on computer simulations will provide an important contribution to the de novo design of self-assembly.
Original language | English |
---|---|
Pages (from-to) | 6767-6776 |
Number of pages | 10 |
Journal | Physical Chemistry Chemical Physics |
Volume | 20 |
Issue number | 10 |
DOIs | |
Publication status | Published - 14 Mar 2018 |
Scopus Subject Areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry