TY - JOUR
T1 - Group projected subspace pursuit for block sparse signal reconstruction
T2 - Convergence analysis and applications
AU - He, Roy Y.
AU - Liu, Haixia
AU - Liu, Hao
N1 - Publisher Copyright:
© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
PY - 2025/2
Y1 - 2025/2
N2 - In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. [26] (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), Journal of Computational Physics, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation y and sampling matrix A, we focus on minimizing the approximation error ‖Ac−y‖22 with respect to the signal c with block sparsity constraints. We prove that when the sampling matrix A satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.
AB - In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. [26] (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), Journal of Computational Physics, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation y and sampling matrix A, we focus on minimizing the approximation error ‖Ac−y‖22 with respect to the signal c with block sparsity constraints. We prove that when the sampling matrix A satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.
KW - Block sparsity
KW - Feature selection
KW - Subspace pursuit
UR - http://www.scopus.com/inward/record.url?scp=85210609264&partnerID=8YFLogxK
U2 - 10.1016/j.acha.2024.101726
DO - 10.1016/j.acha.2024.101726
M3 - Journal article
AN - SCOPUS:85210609264
SN - 1063-5203
VL - 75
JO - Applied and Computational Harmonic Analysis
JF - Applied and Computational Harmonic Analysis
M1 - 101726
ER -