TY - JOUR
T1 - Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry
AU - Hu, Qin
AU - Paau, Man Chin
AU - Zhang, Yan
AU - Gong, Xiaojuan
AU - Zhang, Lei
AU - Lu, Dongtao
AU - Liu, Yang
AU - Liu, Qiaoling
AU - Yao, Jun
AU - Choi, Martin M.F.
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - A fast and green approach to synthesise ultrasmall nitrogen (N) and sulfur (S)-doped carbon dots (N,S-C-dots) by microwave-assisted pyrolysis of the precursors rice as carbon source and N-acetyl-l-cysteine (NAC) as N and S dopant has been developed. The obtained N,S-C-dots were fully characterised by elemental analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, UV-vis absorption and photoluminescence (PL) spectroscopy. The undoped C-dots (derived from rice only) and N,S-C-dots possess different chemical compositions, sizes and spectral properties. With the assistance of high-performance liquid chromatography coupled with fluorescence detection (HPLC-FD), the effect of different mass ratios of NAC to rice (NAC/rice) on N,S-C-dots was investigated. Higher NAC/rice ratio benefits the generation of N,S-C-dots with stronger fluorescence emission. In addition, the HPLC separated N,S-C-dots fractions were collected and further characterised by mass spectrometry, UV-vis absorption and PL spectroscopy, showing that the structural changes induced by doping with heteroatoms N and S plays a key role in regulating the PL properties of the N,S-C-dots. This work highlights the merits of synthesising N,S-C-dots from readily available natural bioresources and applying modern HPLC-FD technology to study the effect of doped heteroatoms on N,S-C-dots properties.
AB - A fast and green approach to synthesise ultrasmall nitrogen (N) and sulfur (S)-doped carbon dots (N,S-C-dots) by microwave-assisted pyrolysis of the precursors rice as carbon source and N-acetyl-l-cysteine (NAC) as N and S dopant has been developed. The obtained N,S-C-dots were fully characterised by elemental analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, UV-vis absorption and photoluminescence (PL) spectroscopy. The undoped C-dots (derived from rice only) and N,S-C-dots possess different chemical compositions, sizes and spectral properties. With the assistance of high-performance liquid chromatography coupled with fluorescence detection (HPLC-FD), the effect of different mass ratios of NAC to rice (NAC/rice) on N,S-C-dots was investigated. Higher NAC/rice ratio benefits the generation of N,S-C-dots with stronger fluorescence emission. In addition, the HPLC separated N,S-C-dots fractions were collected and further characterised by mass spectrometry, UV-vis absorption and PL spectroscopy, showing that the structural changes induced by doping with heteroatoms N and S plays a key role in regulating the PL properties of the N,S-C-dots. This work highlights the merits of synthesising N,S-C-dots from readily available natural bioresources and applying modern HPLC-FD technology to study the effect of doped heteroatoms on N,S-C-dots properties.
UR - http://www.scopus.com/inward/record.url?scp=84899579050&partnerID=8YFLogxK
U2 - 10.1039/c4ra02170c
DO - 10.1039/c4ra02170c
M3 - Journal article
AN - SCOPUS:84899579050
SN - 2046-2069
VL - 4
SP - 18065
EP - 18073
JO - RSC Advances
JF - RSC Advances
IS - 35
ER -