Glutathione-Activatable and O2/Mn2+-Evolving Nanocomposite for Highly Efficient and Selective Photodynamic and Gene-Silencing Dual Therapy

Dinggeng He, Luo Hai, Xing He, Xue Yang, Hung Wing LI*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

Photodynamic therapy (PDT) has been applied in cancer treatment by converting O2 into reactive singlet oxygen (1O2) to kill cancer cells. However, the effectiveness of PDT is limited by the fact that tumor hypoxia causes an inadequate O2 supply, and the overexpressed glutathione (GSH) in cancer cells consumes reactive oxygen species. Herein, a multifunctional hybrid system is developed for selective and highly efficient PDT as well as gene-silencing therapy using a novel GSH-activatable and O2/Mn2+-evolving nanocomposite (GAOME NC). This system consists of honeycomb MnO2 (hMnO2) nanocarrier loaded with catalase, Ce6, and DNAzyme with folate label, which can specifically deliver payloads into cancer cells. Once endocytosed, hMnO2 carriers are reduced by the overexpressed GSH to Mn2+ ions, resulting in the reduction of GSH level and disintegration of GAOME NC. The released catalases then trigger the breakdown of endogenous H2O2 to generate O2, which is converted by the excited Ce6 into 1O2. The self-sufficiency of O2 and consumption of GSH effectively enhance the PDT efficacy. Moreover, DNAzyme is freed for gene silencing in the presence of self-generated Mn2+ ions as cofactors. The rational synergy of enhanced PDT and gene-silencing therapy remarkably improve the in vitro and in vivo therapeutic efficacy of cancers.

Original languageEnglish
Article number1704089
JournalAdvanced Functional Materials
Volume27
Issue number46
DOIs
Publication statusPublished - 8 Dec 2017

Scopus Subject Areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

User-Defined Keywords

  • catalases
  • gene silencing
  • glutathione
  • honeycomb MnO
  • photodynamic therapy

Fingerprint

Dive into the research topics of 'Glutathione-Activatable and O<sub>2</sub>/Mn<sup>2+</sup>-Evolving Nanocomposite for Highly Efficient and Selective Photodynamic and Gene-Silencing Dual Therapy'. Together they form a unique fingerprint.

Cite this