Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1

Chaoyuan Huang, Qiuhong Yong, Yihui Lu, Lu Wang, Yiyuan Zheng, Lina Zhao, Peiwu Li, Chong Peng, Wei Jia*, Fengbin Liu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

6 Citations (Scopus)

Abstract

Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS’s anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.

Original languageEnglish
Article number1335814
Number of pages15
JournalFrontiers in Pharmacology
Volume15
DOIs
Publication statusPublished - 7 Mar 2024

Scopus Subject Areas

  • Pharmacology
  • Pharmacology (medical)

User-Defined Keywords

  • fatty acid oxidation
  • gentiopicroside
  • hypoxia-inducible factor-1 α
  • metabolomics
  • non-alcoholic steatohepatitis
  • oxidative stress
  • peroxisome proliferator-activated receptor α

Fingerprint

Dive into the research topics of 'Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1'. Together they form a unique fingerprint.

Cite this