TY - JOUR
T1 - Genome-wide identification and functional analysis of the splicing component SYF2/NTC31/p29 across different plant species
AU - Tian, Yuan
AU - Chen, Mo Xian
AU - Yang, Jing Fang
AU - Achala, H. H.K.
AU - Gao, Bei
AU - Hao, Ge Fei
AU - Yang, Guang Fu
AU - Dian, Zhi Yong
AU - Hu, Qi Juan
AU - Zhang, Di
AU - ZHANG, Jianhua
AU - Liu, Ying Gao
N1 - Funding Information:
Acknowledgements This work was supported by the Natural Science Foundation of Guangdong Province (2018A030313030), Natural Science Foundation of Shandong Province (BS2015NY002), Funds of Shandong “Double Top” Program, the China Postdoctoral Science Foundation (2017M622801), Shenzhen Overseas Talents Innovation and Entrepreneurship Funding Scheme (The Peacock Scheme, KQTD201101) and Hong Kong Research Grant Council (AoE/M-05/12, AoE/M-403/16, GRF CUHK14160516, 14177617, 12100318).
PY - 2019/2/8
Y1 - 2019/2/8
N2 - Main conclusion: This study systematically identifies plant SYF2/NTC31/p29 genes from 62 plant species by a combinatory bioinformatics approach, revealing the importance of this gene family in phylogenetics, duplication, transcriptional, and post-transcriptional regulation. Alternative splicing is a post-transcriptional regulatory mechanism, which is critical for plant development and stress responses. The entire process is strictly attenuated by a complex of splicing-related proteins, designated splicing factors. Human p29, also referred to as synthetic lethal with cdc forty 2 (SYF2) or the NineTeen complex 31 (NTC31), is a core protein found in the NTC complex of humans and yeast. This splicing factor participates in a variety of biological processes, including DNA damage repair, control of the cell cycle, splicing, and tumorigenesis. However, its function in plants has been seldom reported. Thus, we have systematically identified 89 putative plant SYF2s from 62 plant species among the deposited entries in the Phytozome database. The phylogenetic relationships and evolutionary history among these plant SYF2s were carefully examined. The results revealed that plant SYF2s exhibited distinct patterns regarding their gene structure, promoter sequences, and expression levels, suggesting their functional diversity in response to developmental cues or stress treatments. Although local duplication events, such as tandem duplication and retrotransposition, were found among several plant species, most of the plant species contained only one copy of SYF2, suggesting the existence of additional mechanisms to confer duplication resistance. Further investigation using the model dicot and monocot representatives Arabidopsis and rice SYF2s indicated that the splicing pattern and resulting protein isoforms might play an alternative role in the functional diversity.
AB - Main conclusion: This study systematically identifies plant SYF2/NTC31/p29 genes from 62 plant species by a combinatory bioinformatics approach, revealing the importance of this gene family in phylogenetics, duplication, transcriptional, and post-transcriptional regulation. Alternative splicing is a post-transcriptional regulatory mechanism, which is critical for plant development and stress responses. The entire process is strictly attenuated by a complex of splicing-related proteins, designated splicing factors. Human p29, also referred to as synthetic lethal with cdc forty 2 (SYF2) or the NineTeen complex 31 (NTC31), is a core protein found in the NTC complex of humans and yeast. This splicing factor participates in a variety of biological processes, including DNA damage repair, control of the cell cycle, splicing, and tumorigenesis. However, its function in plants has been seldom reported. Thus, we have systematically identified 89 putative plant SYF2s from 62 plant species among the deposited entries in the Phytozome database. The phylogenetic relationships and evolutionary history among these plant SYF2s were carefully examined. The results revealed that plant SYF2s exhibited distinct patterns regarding their gene structure, promoter sequences, and expression levels, suggesting their functional diversity in response to developmental cues or stress treatments. Although local duplication events, such as tandem duplication and retrotransposition, were found among several plant species, most of the plant species contained only one copy of SYF2, suggesting the existence of additional mechanisms to confer duplication resistance. Further investigation using the model dicot and monocot representatives Arabidopsis and rice SYF2s indicated that the splicing pattern and resulting protein isoforms might play an alternative role in the functional diversity.
KW - Alternative splicing
KW - Gene expression
KW - Gene family
KW - Phylogenetics
KW - Plants
KW - Promoter
UR - http://www.scopus.com/inward/record.url?scp=85061116800&partnerID=8YFLogxK
U2 - 10.1007/s00425-018-3026-3
DO - 10.1007/s00425-018-3026-3
M3 - Journal article
C2 - 30317439
AN - SCOPUS:85061116800
SN - 0032-0935
VL - 249
SP - 583
EP - 600
JO - Planta
JF - Planta
IS - 2
ER -