Generalized Out-of-Distribution Detection: A Survey

Jingkang Yang, Kaiyang Zhou, Yixuan Li, Ziwei Liu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

18 Citations (Scopus)

Abstract

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen during training time and cannot make a safe decision. The term, OOD detection, first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD), are closely related to OOD detection in terms of motivation and methodology. Despite common goals, these topics develop in isolation, and their subtle differences in definition and problem setting often confuse readers and practitioners. In this survey, we first present a unified framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e.,AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Despite comprehensive surveys of related fields, the summarization of OOD detection methods remains incomplete and requires further advancement. This paper specifically addresses the gap in recent technical developments in the field of OOD detection. It also provides a comprehensive discussion of representative methods from other sub-tasks and how they relate to and inspire the development of OOD detection methods. The survey concludes by identifying open challenges and potential research directions.

Original languageEnglish
Pages (from-to)5635-5662
Number of pages28
JournalInternational Journal of Computer Vision
Volume132
Issue number12
DOIs
Publication statusE-pub ahead of print - 23 Jun 2024

Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

User-Defined Keywords

  • AI safety
  • Computer vision
  • Model trustworthiness
  • Open set recognition
  • Out-of-distribution detection

Fingerprint

Dive into the research topics of 'Generalized Out-of-Distribution Detection: A Survey'. Together they form a unique fingerprint.

Cite this