TY - JOUR
T1 - GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments
AU - Tohidi, Fatemeh
AU - CAI, Zongwei
N1 - This study was supported by the National Natural Science Foundation of China (21175025) and Faculty Research Grant from Hong Kong Baptist University (FRG2/12-13/032).
Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2015/8/25
Y1 - 2015/8/25
N2 - A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)–106(±7) %, 82(±3)–87(±4) %, 86(±6)–87(±8) %, and 88(±4)–105(±3) % in wastewater and 88(±5)–96(±8) %, 84(±2)–87(±3) %, 84(±7)–89(±4) %, and 88(±3)–97(±5) % in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw).
AB - A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)–106(±7) %, 82(±3)–87(±4) %, 86(±6)–87(±8) %, and 88(±4)–105(±3) % in wastewater and 88(±5)–96(±8) %, 84(±2)–87(±3) %, 84(±7)–89(±4) %, and 88(±3)–97(±5) % in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw).
KW - 2,4-Dichlorophenol
KW - 2,8-Dichlorodibenzo-p-dioxin
KW - Methyl triclosan
KW - Sludge
KW - Triclosan
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=84937969644&partnerID=8YFLogxK
U2 - 10.1007/s11356-015-4289-x
DO - 10.1007/s11356-015-4289-x
M3 - Journal article
C2 - 25810102
AN - SCOPUS:84937969644
SN - 0944-1344
VL - 22
SP - 11387
EP - 11400
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 15
ER -