TY - GEN
T1 - GBLENDER
T2 - 2010 International Conference on Management of Data, SIGMOD '10
AU - Jin, Changjiu
AU - Bhowmick, Sourav S.
AU - Xiao, Xiaokui
AU - Cheng, James
AU - Choi, Byron
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - Given a graph database D and a query graph g, an exact subgraph matching query asks for the set S of graphs in D that contain g as a subgraph. This type of queries find important applications in several domains such as bioinformatics and chemoinformatics, where users are generally not familiar with complex graph query languages. Consequently, user-friendly visual interfaces which support query graph construction can reduce the burden of data retrieval for these users. Existing techniques for subgraph matching queries built on top of such visual framework are designed to optimize the time required in retrieving the result set S from D, assuming that the whole query graph has been constructed. This leads to sub-optimal system response time as the query processing is initiated only after the user has finished drawing the query graph. In this paper, we take the first step towards exploring a novel graph query processing paradigm, where instead of processing a query graph after its construction, it interleaves visual query construction and processing to improve system response time. To realize this, we present an algorithm called GBLENDER that prunes false results and prefetches partial query results by exploiting the latency offered by the visual query formulation. It employs a novel action-aware indexing scheme that exploits users' interaction characteristics with visual interfaces to support efficient retrieval. Extensive experiments on both real and synthetic datasets demonstrate the effectiveness and efficiency of our solution.
AB - Given a graph database D and a query graph g, an exact subgraph matching query asks for the set S of graphs in D that contain g as a subgraph. This type of queries find important applications in several domains such as bioinformatics and chemoinformatics, where users are generally not familiar with complex graph query languages. Consequently, user-friendly visual interfaces which support query graph construction can reduce the burden of data retrieval for these users. Existing techniques for subgraph matching queries built on top of such visual framework are designed to optimize the time required in retrieving the result set S from D, assuming that the whole query graph has been constructed. This leads to sub-optimal system response time as the query processing is initiated only after the user has finished drawing the query graph. In this paper, we take the first step towards exploring a novel graph query processing paradigm, where instead of processing a query graph after its construction, it interleaves visual query construction and processing to improve system response time. To realize this, we present an algorithm called GBLENDER that prunes false results and prefetches partial query results by exploiting the latency offered by the visual query formulation. It employs a novel action-aware indexing scheme that exploits users' interaction characteristics with visual interfaces to support efficient retrieval. Extensive experiments on both real and synthetic datasets demonstrate the effectiveness and efficiency of our solution.
KW - frequent subgraphs
KW - graph databases
KW - graph indexing
KW - infrequent subgraphs
KW - prefetching
KW - visual query formulation
UR - http://www.scopus.com/inward/record.url?scp=77954733150&partnerID=8YFLogxK
U2 - 10.1145/1807167.1807182
DO - 10.1145/1807167.1807182
M3 - Conference proceeding
AN - SCOPUS:77954733150
SN - 9781450300322
T3 - Proceedings of the ACM SIGMOD International Conference on Management of Data
SP - 111
EP - 122
BT - Proceedings of the 2010 International Conference on Management of Data, SIGMOD '10
Y2 - 6 June 2010 through 11 June 2010
ER -