Abstract
One-shot Federated Learning (OFL) significantly reduces communication costs in FL by aggregating trained models only once. However, the performance of advanced OFL methods is far behind the normal FL. In this work, we provide a causal view to find that this performance drop of OFL methods comes from the isolation problem, which means that locally isolatedly trained models in OFL may easily fit to spurious correlations due to data heterogeneity. From the causal perspective, we observe that the spurious fitting can be alleviated by augmenting intermediate features from other clients. Built upon our observation, we propose a novel learning approach to endow OFL with superb performance and low communication and storage costs, termed as FuseFL. Specifically, FuseFL decomposes neural networks into several blocks and progressively trains and fuses each block following a bottom-up manner for feature augmentation, introducing no additional communication costs. Comprehensive experiments demonstrate that FuseFL outperforms existing OFL and ensemble FL by a significant margin. We conduct comprehensive experiments to show that FuseFL supports high scalability of clients, heterogeneous model training, and low memory costs. Our work is the first attempt using causality to analyze and alleviate data heterogeneity of OFL.
Original language | English |
---|---|
Title of host publication | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 |
Editors | A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang |
Publisher | Neural Information Processing Systems Foundation |
Number of pages | 37 |
ISBN (Electronic) | 9798331314385 |
Publication status | Published - Dec 2024 |
Event | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver Convention Center , Vancouver, Canada Duration: 9 Dec 2024 → 15 Dec 2024 https://neurips.cc/Conferences/2024 https://openreview.net/group?id=NeurIPS.cc/2024 https://proceedings.neurips.cc/paper_files/paper/2024 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural information processing systems foundation |
Volume | 37 |
ISSN (Print) | 1049-5258 |
Name | NeurIPS Proceedings |
---|
Conference
Conference | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 9/12/24 → 15/12/24 |
Internet address |