Abstract
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data. However, most SSL methods are commonly based on instance-wise consistency between different data transformations. Therefore, the label guidance on labeled data is hard to be propagated to unlabeled data. Consequently, the learning process on labeled data is much faster than on unlabeled data which is likely to fall into a local minima that does not favor unlabeled data, leading to sub-optimal generalization performance. In this paper, we propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets. Specifically, we increase the empirical risk on labeled data to obtain a worst-case model which is a failure case that needs to be enhanced. Then, by leveraging the richness of unlabeled data, we penalize the prediction difference (i.e., cross-sharpness) between the worst-case model and the original model so that the learning direction is beneficial to generalization on unlabeled data. Therefore, we can calibrate the learning process without being limited to insufficient label information. As a result, the mismatched learning performance can be mitigated, further enabling the effective exploitation of unlabeled data and improving SSL performance. Through comprehensive validation, we show FlatMatch achieves state-of-the-art results in many SSL settings. Our code is available at https://github.com/tmllab/2023_NeurIPS_FlatMatch.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 36 (NeurIPS 2023) |
Editors | A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine |
Publisher | Neural Information Processing Systems Foundation |
Number of pages | 21 |
ISBN (Print) | 9781713899921 |
DOIs | |
Publication status | Published - 10 Dec 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - Ernest N. Morial Convention Center, New Orleans, United States Duration: 10 Dec 2023 → 16 Dec 2023 https://proceedings.neurips.cc/paper_files/paper/2023 (Conference Paper Search) https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral (Conference Paper Search) https://neurips.cc/Conferences/2023 (Conference Website) |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Publisher | Neural information processing systems foundation |
Volume | 36 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 10/12/23 → 16/12/23 |
Internet address |
|
Scopus Subject Areas
- Computer Networks and Communications
- Information Systems
- Signal Processing