Finite element modelling for footwear design and evaluation: A systematic scoping review

Yang Song, Enze Shao, István Bíró, Julien Steven Baker, Yaodong Gu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

12 Citations (Scopus)

Abstract

Finite element modelling has become an efficient tool for an in-depth understanding of the foot, footwear biomechanics and footwear optimization. The aim of this paper was to provide an updated overview in relation to the footwear finite element (FE) analysis published since 2000. The paper will attempt to outline the main challenges and research gaps that need confronting in the further development of realistic and accurate models for clinical and industrial applications. English databases of the Web of Science and PubMed were used to search (‘finite element’ OR ‘FEA’ OR ‘computational model’) AND (‘shoe’ OR ‘footwear’) until 16 December 2021. Articles that conducted FE analyses on the whole foot and footwear structures were included in this review. Twelve articles met the eligibility criteria, and were grouped into three categories for further analysis, (1) finite element modelling of the foot and high-heeled shoes; (2) finite element modelling of the foot and boot; (3) finite element modelling of the foot and sports shoe. Even though most of the existing foot-shoe FE analyses were performed under certain simplifications and assumptions, they have provided essential contributions in identifying the mechanical response of the foot in casual or athletic footwear. Further to this, the results have provided information in relation to optimizing footwear design to enhance functional performance. Nevertheless, further simulations still present several challenges, including reliable data information for geometry reconstruction, the balance between accurate details and computational cost, accurate representations of material properties, realistic boundary and loading conditions, and thorough model validation. In addition, some research gaps in terms of the coverage of footwear design, the consideration of insole/orthosis and socks, and the internal and external validity of the FE design should be fully covered.

Original languageEnglish
Article numbere10940
Number of pages15
JournalHeliyon
Volume8
Issue number10
DOIs
Publication statusPublished - Oct 2022

Scopus Subject Areas

  • General

User-Defined Keywords

  • Finite element analysis
  • Foot
  • Footwear
  • Biomechanics
  • Contact interaction

Cite this