Abstract
In machine learning we often encounter structured output prediction problems (SOPPs), i.e. problems where the output space admits a rich internal structure. Application domains where SOPPs naturally occur include natural language processing, speech recognition, and computer vision. Typical SOPPs have an extremely large label set, which grows exponentially as a function of the size of the output. Existing generalization analysis implies generalization bounds with at least a square-root dependency on the cardinality d of the label set, which can be vacuous in practice. In this paper, we significantly improve the state of the art by developing novel high-probability bounds with a logarithmic dependency on d. Moreover, we leverage the lens of algorithmic stability to develop generalization bounds in expectation without any dependency on d. Our results therefore build a solid theoretical foundation for learning in large-scale SOPPs. Furthermore, we extend our results to learning with weakly dependent data.
Original language | English |
---|---|
Title of host publication | Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
Editors | Zhi-Hua Zhou |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 2841-2847 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241196 |
DOIs | |
Publication status | Published - Aug 2021 |
Event | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada Duration: 19 Aug 2021 → 27 Aug 2021 https://ijcai-21.org/# https://www.ijcai.org/proceedings/2021/ |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
ISSN (Print) | 1045-0823 |
Conference
Conference | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
---|---|
Country/Territory | Canada |
City | Virtual, Online |
Period | 19/08/21 → 27/08/21 |
Internet address |
Scopus Subject Areas
- Artificial Intelligence