Fedimpro: Measuring And Improving Client Update In Federated Learning

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu, Bo Han, Xiaowen Chu*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

2 Citations (Scopus)

Abstract

Federated Learning (FL) models often experience client drift caused by heterogeneous data, where the distribution of data differs across clients. To address this issue, advanced research primarily focuses on manipulating the existing gradients to achieve more consistent client models. In this paper, we present an alternative perspective on client drift and aim to mitigate it by generating improved local models. First, we analyze the generalization contribution of local training and conclude that this generalization contribution is bounded by the conditional Wasserstein distance between the data distribution of different clients. Then, we propose FedImpro, to construct similar conditional distributions for local training. Specifically, FedImpro decouples the model into high-level and low-level components, and trains the high-level portion on reconstructed feature distributions. This approach enhances the generalization contribution and reduces the dissimilarity of gradients in FL. Experimental results show that FedImpro can help FL defend against data heterogeneity and enhance the generalization performance of the model.

Original languageEnglish
Title of host publicationProceedings of the Twelfth International Conference on Learning Representations, ICLR 2024
PublisherInternational Conference on Learning Representations
Pages1-30
Number of pages30
Publication statusPublished - May 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Messe Wien Exhibition and Congress Center, Vienna, Austria
Duration: 7 May 202411 May 2024
https://iclr.cc/Conferences/2024 (Conference website)
https://iclr.cc/virtual/2024/calendar (Conference schedule )
https://openreview.net/group?id=ICLR.cc/2024/Conference#tab-accept-oral (Conference proceedings)

Publication series

NameProceedings of the International Conference on Learning Representations, ICLR

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityVienna
Period7/05/2411/05/24
Internet address

Scopus Subject Areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Cite this