Federated Learning with Bilateral Curation for Partially Class-Disjoint Data

Ziqing Fan, Ruipeng Zhang, Jiangchao Yao, Bo Han, Ya Zhang, Yanfeng Wang*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

6 Citations (Scopus)

Abstract

Partially class-disjoint data (PCDD), a common yet under-explored data formation where each client contributes a part of classes (instead of all classes) of samples, severely challenges the performance of federated algorithms. Without full classes, the local objective will contradict the global objective, yielding the angle collapse problem for locally missing classes and the space waste problem for locally existing classes. As far as we know, none of the existing methods can intrinsically mitigate PCDD challenges to achieve holistic improvement in the bilateral views (both global view and local view) of federated learning. To address this dilemma, we are inspired by the strong generalization of simplex Equiangular Tight Frame (ETF) on the imbalanced data, and propose a novel approach called FedGELA where the classifier is globally fixed as a simplex ETF while locally adapted to the personal distributions. Globally, FedGELA provides fair and equal discrimination for all classes and avoids inaccurate updates of the classifier, while locally it utilizes the space of locally missing classes for locally existing classes. We conduct extensive experiments on a range of datasets to demonstrate that our FedGELA achieves promising performance (averaged improvement of 3.9% to FedAvg and 1.5% to best baselines) and provide both local and global convergence guarantees. Source code is available at: https://github.com/MediaBrain-SJTU/FedGELA.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 36 (NeurIPS 2023)
EditorsA. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural Information Processing Systems Foundation
Number of pages14
ISBN (Print)9781713899921
DOIs
Publication statusPublished - 10 Dec 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - Ernest N. Morial Convention Center, New Orleans, United States
Duration: 10 Dec 202316 Dec 2023
https://proceedings.neurips.cc/paper_files/paper/2023 (Conference Paper Search)
https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral (Conference Paper Search)
https://neurips.cc/Conferences/2023 (Conference Website)

Publication series

NameAdvances in Neural Information Processing Systems
PublisherNeural information processing systems foundation
Volume36
ISSN (Print)1049-5258

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/12/2316/12/23
Internet address

Scopus Subject Areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Federated Learning with Bilateral Curation for Partially Class-Disjoint Data'. Together they form a unique fingerprint.

Cite this