Abstract
The AutoAttack (AA) has been the most reliable method to evaluate adversarial robustness when considerable computational resources are available. However, the high computational cost (e.g., 100 times more than that of the project gradient descent attack) makes AA infeasible for practitioners with limited computational resources, and also hinders applications of AA in the adversarial training (AT). In this paper, we propose a novel method, minimum-margin (MM) attack, to fast and reliably evaluate adversarial robustness. Compared with AA, our method achieves comparable performance but only costs 3% of the computational time in extensive experiments. The reliability of our method lies in that we evaluate the quality of adversarial examples using the margin between two targets that can precisely identify the most adversarial example. The computational efficiency of our method lies in an effective Sequential TArget Ranking Selection (STARS) method, ensuring that the cost of the MM attack is independent of the number of classes. The MM attack opens a new way for evaluating adversarial robustness and provides a feasible and reliable way to generate high-quality adversarial examples in AT.
Original language | English |
---|---|
Title of host publication | Proceedings of 39th International Conference on Machine Learning (ICML 2022) |
Editors | Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, Sivan Sabato |
Publisher | ML Research Press |
Pages | 7144-7163 |
Number of pages | 20 |
Publication status | Published - 17 Jul 2022 |
Event | 39th International Conference on Machine Learning, ICML 2022 - Baltimore Convention Center , Baltimore, Maryland, United States Duration: 17 Jul 2022 → 23 Jul 2022 https://icml.cc/Conferences/2022 |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Volume | 162 |
ISSN (Print) | 2640-3498 |
Conference
Conference | 39th International Conference on Machine Learning, ICML 2022 |
---|---|
Country/Territory | United States |
City | Baltimore, Maryland |
Period | 17/07/22 → 23/07/22 |
Internet address |