TY - JOUR
T1 - Extremely low-efficiency roll-off of phosphorescent organic light-emitting diodes at high brightness based on acridine heterocyclic derivatives
AU - Chen, Minyu
AU - Yang, Jiali
AU - Ye, Zhonghua
AU - Wang, Shuanglong
AU - Tang, Zhenyu
AU - Chen, Guo
AU - Zheng, Yanqiong
AU - Shi, Ying
AU - Wei, Bin
AU - Wong, Wai Yeung
N1 - Funding Information:
This work was financially supported by the Project of the National Science Foundation (Grant No. 51725505 and 61775130), the ‘‘973’’ program (2015CB655005), and the Science and Technology Committee of Shanghai (15590500500).
Funding Information:
This work was financially supported by the Project of the National Science Foundation (Grant No. 51725505 and 61775130), the “973” program (2015CB655005), and the Science and Technology Committee of Shanghai (15590500500).
PY - 2018
Y1 - 2018
N2 - Three novel host materials, IpCm-PhBzAc (1,3-(4-(12,12-dimethylbenzofuro[3,2-b]acridin-7(12H)-yl)phenyl)-6-isopropyl-4H-chromen-4-one), DpAn-BzAc (2,10-(4-(12,12-dimethylbenzofuro[3,2-b]acridin-7(12H)-yl)phenyl)-10-phenylanthracen-9(10H)-one) and DpTrz-BphBzAc (3,7-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-4-yl)-12,12-dimethyl-7,12-dihydrobenzofuro[3,2-b]acridine) have been designed and synthesized, and their utilization as host materials for phosphorescent organic light-emitting diodes (PhOLEDs) has been investigated. We have fabricated PhOLEDs using green bis(2-phenylpyridine)iridium(iii) acetylacetonate as doped emitters and two hosting schemes, which are the single host system consisting of BzAc derivatives and the co-host system with 1,3-bis(carbazolyl)benzene. We found that the PhOLEDs with the co-host system of DpAn-BzAc and DpTrz-BphBzAc achieved CEs of 57.1 cd A−1 and 53.0 cd A−1, with corresponding efficiency roll-off of only 7.6% and 0.9%, respectively, from the maximum to the practical brightness of 5000 cd m−2. Extremely reduced efficiency roll-off values for BzAc-based PhOLEDs were attributed to their superior thermal stability and excellent bipolar transport properties, and a small singlet-triplet energy gap also afforded efficient reverse intersystem crossing, thus reducing the triplet density of the host for PhOLEDs.
AB - Three novel host materials, IpCm-PhBzAc (1,3-(4-(12,12-dimethylbenzofuro[3,2-b]acridin-7(12H)-yl)phenyl)-6-isopropyl-4H-chromen-4-one), DpAn-BzAc (2,10-(4-(12,12-dimethylbenzofuro[3,2-b]acridin-7(12H)-yl)phenyl)-10-phenylanthracen-9(10H)-one) and DpTrz-BphBzAc (3,7-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-4-yl)-12,12-dimethyl-7,12-dihydrobenzofuro[3,2-b]acridine) have been designed and synthesized, and their utilization as host materials for phosphorescent organic light-emitting diodes (PhOLEDs) has been investigated. We have fabricated PhOLEDs using green bis(2-phenylpyridine)iridium(iii) acetylacetonate as doped emitters and two hosting schemes, which are the single host system consisting of BzAc derivatives and the co-host system with 1,3-bis(carbazolyl)benzene. We found that the PhOLEDs with the co-host system of DpAn-BzAc and DpTrz-BphBzAc achieved CEs of 57.1 cd A−1 and 53.0 cd A−1, with corresponding efficiency roll-off of only 7.6% and 0.9%, respectively, from the maximum to the practical brightness of 5000 cd m−2. Extremely reduced efficiency roll-off values for BzAc-based PhOLEDs were attributed to their superior thermal stability and excellent bipolar transport properties, and a small singlet-triplet energy gap also afforded efficient reverse intersystem crossing, thus reducing the triplet density of the host for PhOLEDs.
UR - http://www.scopus.com/inward/record.url?scp=85053856941&partnerID=8YFLogxK
U2 - 10.1039/c8tc02739k
DO - 10.1039/c8tc02739k
M3 - Journal article
AN - SCOPUS:85053856941
SN - 2050-7526
VL - 6
SP - 9713
EP - 9722
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 36
ER -