Abstract
Synchronous stochastic gradient descent (S-SGD) with data parallelism is widely used for training deep learning (DL) models in distributed systems. A pipelined schedule of the computing and communication tasks of a DL training job is an effective scheme to hide some communication costs. In such pipelined S-SGD, tensor fusion (i.e., merging some consecutive layers' gradients for a single communication) is a key ingredient to improve communication efficiency. However, existing tensor fusion techniques schedule the communication tasks sequentially, which overlooks their independence nature. In this paper, we expand the design space of scheduling by exploiting simultaneous All-Reduce communications. Through theoretical analysis and experiments, we show that simultaneous All-Reduce communications can effectively improve the communication efficiency of small tensors. We formulate an optimization problem of minimizing the training iteration time, in which both tensor fusion and simultaneous communications are allowed. We develop an efficient optimal scheduling solution and implement the distributed training algorithm ASC-WFBP with Horovod and PyTorch. We conduct real-world experiments on an 8-node GPU cluster of 32 GPUs with 10Gbps Ethernet. Experimental results on four modern DNNs show that ASC-WFBP can achieve about 1.09 × -2.48× speedup over the baseline without tensor fusion, and 1.15× -1.35× speedup over the state-of-the-art tensor fusion solution.
Original language | English |
---|---|
Title of host publication | IEEE INFOCOM 2021 - IEEE Conference on Computer Communications |
Publisher | IEEE |
Pages | 1-10 |
Number of pages | 10 |
ISBN (Electronic) | 9781665403252 |
ISBN (Print) | 9781665431316 |
DOIs | |
Publication status | Published - 10 May 2021 |
Event | 40th IEEE International Conference on Computer Communications, IEEE INFOCOM 2021 - Vancouver, BC, Canada Duration: 10 May 2021 → 13 May 2021 https://infocom2021.ieee-infocom.org/ (Conference website) https://ieeexplore.ieee.org/xpl/conhome/9488422/proceeding (Conference proceedings) |
Publication series
Name | Proceedings of IEEE Conference on Computer Communications |
---|---|
Volume | 2021-May |
ISSN (Print) | 0743-166X |
ISSN (Electronic) | 2641-9874 |
Conference
Conference | 40th IEEE International Conference on Computer Communications, IEEE INFOCOM 2021 |
---|---|
Country/Territory | Canada |
City | Vancouver, BC |
Period | 10/05/21 → 13/05/21 |
Internet address |
|
Scopus Subject Areas
- Computer Science(all)
- Electrical and Electronic Engineering
User-Defined Keywords
- Communication-Efficient
- Distributed Deep Learning
- Simultaneous Communications