TY - JOUR
T1 - Epstein–Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway
AU - Liu, Yue
AU - Lui, Ka Sin
AU - Ye, Zuodong
AU - Chen, Luo
AU - Cheung, Allen Ka Loon
N1 - This work was supported by the Health and Medical Research Fund (HMRF) (18170032), Research Grant Council (RGC) Theme-based Research Scheme (TBRS, T12-712/21-R) and General Research Fund (GRF, 1120222), Pneumoconiosis Compensation Fund Board Research Grant (2022), Interdisciplinary Research Matching Scheme (RC-IRCs-1718-03), Faculty Research Grant (FRG2/17–18/066), Faculty Start-up Fund (SCI-17-18-01), Tier2 Start-up Grant (RC-SGT2/18-19/SCI/007), Incentive Award for External Competitive Research Grants, and Research Council Start-up Grant of Hong Kong Baptist University (to A.K.L.C.).
PY - 2024/12/2
Y1 - 2024/12/2
N2 - Epstein–Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
AB - Epstein–Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
KW - BRRF1
KW - Epstein–Barr virus
KW - IL-22
KW - butyrophilin
KW - gamma-delta T cells
KW - nasopharyngeal carcinoma
UR - http://www.scopus.com/inward/record.url?scp=85213277128&partnerID=8YFLogxK
U2 - 10.3390/ijms252413452
DO - 10.3390/ijms252413452
M3 - Journal article
SN - 1661-6596
VL - 25
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 24
M1 - 13452
ER -