Abstract
In this Brief Report the properties of both dynamical and static entanglement in the integrable quantum dimer are studied in terms of the reduced-density linear entropy and von Neumann entropy with various coupling parameters, total boson numbers, and initial states. The mean entanglement, which is defined to be averaged over time, is used to describe the influence of the classical separatrix on the behavior of entanglement. It is shown that the mean entanglement exhibits a maximum near the position of the corresponding classical separatrix energy and that the static entanglement of the state with the largest eigenvalue of the quantum spectrum displays a maximum near the bifurcation point. For weak coupling and larger total boson number the maximum entanglement state is exactly at the position of the classical separatrix and bifurcation. In strong coupling all initial states have nearly the same mean entanglement.
Original language | English |
---|---|
Article number | 034302 |
Journal | Physical Review A |
Volume | 71 |
Issue number | 3 |
DOIs | |
Publication status | Published - 10 Mar 2005 |