Enhancing variational autoencoders with mutual information neural estimation for text generation

Dong Qian, Kwok Wai CHEUNG

Research output: Chapter in book/report/conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

While broadly applicable to many natural language processing (NLP) tasks, variational autoencoders (VAEs) are hard to train due to the posterior collapse issue where the latent variable fails to encode the input data effectively. Various approaches have been proposed to alleviate this problem to improve the capability of the VAE. In this paper, we propose to introduce a mutual information (MI) term between the input and its latent variable to regularize the objective of the VAE. Since estimating the MI in the high-dimensional space is intractable, we employ neural networks for the estimation of the MI and provide a training algorithm based on the convex duality approach. Our experimental results on three benchmark datasets demonstrate that the proposed model, compared to the state-of-the-art baselines, exhibits less posterior collapse and has comparable or better performance in language modeling and text generation. We also qualitatively evaluate the inferred latent space and show that the proposed model can generate more reasonable and diverse sentences via linear interpolation in the latent space.

Original languageEnglish
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages4047-4057
Number of pages11
ISBN (Electronic)9781950737901
Publication statusPublished - Nov 2019
EventThe 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: 3 Nov 20197 Nov 2019

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

ConferenceThe 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Country/TerritoryChina
CityHong Kong
Period3/11/197/11/19

Scopus Subject Areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Enhancing variational autoencoders with mutual information neural estimation for text generation'. Together they form a unique fingerprint.

Cite this