Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates)

Jian Zhou, Ling Meng, Ziyi Yang, Jun Wang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through β-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.
Original languageEnglish
Article number2400096
Number of pages9
JournalAdvanced Science
DOIs
Publication statusE-pub ahead of print - 13 Mar 2024

Scopus Subject Areas

  • Medicine (miscellaneous)
  • Chemical Engineering(all)
  • Materials Science(all)
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Engineering(all)
  • Physics and Astronomy(all)

User-Defined Keywords

  • bis(boronates)
  • cascade reaction
  • C─C bond cleavage
  • hydroboration

Fingerprint

Dive into the research topics of 'Enantio- and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3- and 1,4-Bis(boronates)'. Together they form a unique fingerprint.

Cite this