TY - JOUR
T1 - Efficient targeted recombination with CRISPR/Cas9 in hybrids of Caenorhabditis nematodes with suppressed recombination
AU - Xie, Dongying
AU - Gu, Bida
AU - Liu, Yiqing
AU - Ye, Pohao
AU - Ma, Yiming
AU - Wen, Tongshu
AU - Song, Xiaoyuan
AU - Zhao, Zhongying
N1 - This work was supported by General Research Funds (N_HKBU201/18, HKBU12101520, HKBU12101522) from Hong Kong Research Grant Council and State Key Laboratory of Environmental and Biological Analysis grant, SKLP_2223_P06, Hong Kong Innovation and Technology Fund, GHP/176/21SZ, and Initiation Grant for Faculty Niche Research Areas RC-FNRA-IG /21–22/SCI/02 from Hong Kong Baptist University to ZZ.
Publisher Copyright:
© 2023, BioMed Central Ltd., part of Springer Nature.
PY - 2023/12
Y1 - 2023/12
N2 - Background: Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. Results: Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. Conclusions: Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.
AB - Background: Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. Results: Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. Conclusions: Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.
KW - C. briggsae
KW - C. nigoni
KW - CRISPR/Cas9
KW - Genetic mapping
KW - Hybrid
KW - Targeted recombination
UR - http://www.scopus.com/inward/record.url?scp=85173943234&partnerID=8YFLogxK
U2 - 10.1186/s12915-023-01704-0
DO - 10.1186/s12915-023-01704-0
M3 - Journal article
C2 - 37775783
AN - SCOPUS:85173943234
SN - 1741-7007
VL - 21
JO - BMC Biology
JF - BMC Biology
IS - 1
M1 - 203
ER -