Abstract
A bipartite graph contains inter-set edges between two disjoint vertex sets, and is widely used to model real-world data, such as user-item purchase records, author-article publications, and biological interactions between drugs and proteins. k-Bipartite Graph Clustering (k-BGC) is to partition the target vertex set in a bipartite graph into k disjoint clusters. The clustering quality is important to the utility of k-BGC in various applications like social network analysis, recommendation systems, text mining, and bioinformatics, to name a few. Existing approaches to k-BGC either output clustering results with compromised quality due to inadequate exploitation of high-order information between vertices, or fail to handle sizable bipartite graphs with billions of edges.
Motivated by this, this paper presents two efficient k-BGC solutions, HOPE and HOPE+, which achieve state-of-the-art performance on large-scale bipartite graphs. HOPE obtains high scalability and effectiveness through a new k-BGC problem formulation based on the novel notion of high-order perspective (HOP) vectors and an efficient technique for low-rank approximation of HOP vectors. HOPE+ further elevates the k-BGC performance to another level with a judicious problem transformation and a highly efficient two-stage optimization framework. Two variants, HOPE+ (FNEM) and HOPE+ (SNEM) are designed when either the Frobenius norm or spectral norm is applied in the transformation. Extensive experiments, comparing HOPE and HOPE+ against 13 competitors on 10 real-world datasets, exhibit that our solutions, especially HOPE+, are superior to existing methods in terms of result quality, while being up to orders of magnitude faster. On the largest dataset MAG with 1.1 billion edges, HOPE+ is able to produce clusters with the highest clustering accuracy within 31 minutes, which is unmatched by any existing solution for k-BGC.
Motivated by this, this paper presents two efficient k-BGC solutions, HOPE and HOPE+, which achieve state-of-the-art performance on large-scale bipartite graphs. HOPE obtains high scalability and effectiveness through a new k-BGC problem formulation based on the novel notion of high-order perspective (HOP) vectors and an efficient technique for low-rank approximation of HOP vectors. HOPE+ further elevates the k-BGC performance to another level with a judicious problem transformation and a highly efficient two-stage optimization framework. Two variants, HOPE+ (FNEM) and HOPE+ (SNEM) are designed when either the Frobenius norm or spectral norm is applied in the transformation. Extensive experiments, comparing HOPE and HOPE+ against 13 competitors on 10 real-world datasets, exhibit that our solutions, especially HOPE+, are superior to existing methods in terms of result quality, while being up to orders of magnitude faster. On the largest dataset MAG with 1.1 billion edges, HOPE+ is able to produce clusters with the highest clustering accuracy within 31 minutes, which is unmatched by any existing solution for k-BGC.
Original language | English |
---|---|
Article number | 23 |
Pages (from-to) | 1-27 |
Number of pages | 27 |
Journal | Proceedings of the ACM on Management of Data |
Volume | 2 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2024 |
User-Defined Keywords
- Bipartite Graph
- Clustering
- Random Walk
- Eigenvector