Effects of heat and hyposalinity on the gene expression in Acropora pruinosa larvae

Apple Pui Yi Chui*, Yue Him Wong, Jin Sun, Taison Ka Tai Chang, Jian Wen Qiu, Pei Yuan Qian, Put Ang Jr.*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

3 Citations (Scopus)

Abstract

Introduction: Climate change has resulted in elevated sea surface temperature as well as increased frequency of extreme weather events, e.g. cyclones and rainstorms, which could lead to reduced seawater salinity. While temperature effects on corals have been widely examined, the combined effects of both temperature and salinity on corals, especially their early stages, remain poorly known. This study aimed to examine how the larvae of Acropora pruinosa in a marginal coral habitat, Hong Kong, respond to high temperature (+5°C ambient, HT), low salinity (26 psu, LS), and the combined effects of both stressors (HTLS).

Methods: We recorded larval survival and settlement success under different experimental treatments, and used RNA-Seq technique to compare the gene expression patterns of these larvae to understand the underlying molecular mechanism of stress responses.

Results: Our results showed that the survivorship of coral larvae was not affected in all experimental treatments, with all larvae surviving through the 72-hour period of the experiment. Yet, larval settlement was compromised under all stress treatments. The settlement rates were 39.3%, 12%, and 0% for the elevated temperature, reduced salinity, and the combined treatment, respectively, which were all significantly lower than that under the control treatment (78%). We demonstrated that low salinity (LS) triggered responsive gene sets with functions in ATP production, protein translation, and receptor for neuroactive ligands. In addition, high temperature (HT) treatment also triggered MAPK and NF-kB signaling and apoptosis in these coral larvae. The combined stressor treatment (HTLS) acted synergistically, resulting in the up-regulation of intracellular transducers that could trigger the intrinsic apoptosis pathway. This may explain the total failure in larval settlement under HTLS that could further increase larval vulnerability in the natural environment.

Discussion: Our results provide new insights into the molecular responses of coral larvae and represent an essential first step in expanding ourunderstanding of the mechanisms of tolerance that may be exhibited by coral larvae exposed to multiple stressors.

Original languageEnglish
Article number1096407
Number of pages15
JournalFrontiers in Marine Science
Volume10
DOIs
Publication statusPublished - 6 Apr 2023

Scopus Subject Areas

  • Oceanography
  • Global and Planetary Change
  • Aquatic Science
  • Water Science and Technology
  • Environmental Science (miscellaneous)
  • Ocean Engineering

User-Defined Keywords

  • Acropora pruinosa
  • climate change
  • coral larvae
  • elevated seawater temperature
  • reduced salinity
  • transcriptomic (RNA-seq)

Fingerprint

Dive into the research topics of 'Effects of heat and hyposalinity on the gene expression in Acropora pruinosa larvae'. Together they form a unique fingerprint.

Cite this