dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data

Yu Xu, Jiaxing Chen, Aiping Lyu*, William K Cheung*, Lu Zhang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

5 Citations (Scopus)

Abstract

Time-course single-cell RNA sequencing (scRNA-seq) data have been widely used to explore dynamic changes in gene expression of transcription factors (TFs) and their target genes. This information is useful to reconstruct cell-type-specific gene regulatory networks (GRNs). However, the existing tools are commonly designed to analyze either time-course bulk gene expression data or static scRNA-seq data via pseudo-time cell ordering. A few methods successfully utilize the information from multiple time points while also considering the characteristics of scRNA-seq data. We proposed dynDeepDRIM, a novel deep learning model to reconstruct GRNs using time-course scRNA-seq data. It represents the joint expression of a gene pair as an image and utilizes the image of the target TF–gene pair and the ones of the potential neighbors to reconstruct GRNs from time-course scRNA-seq data. dynDeepDRIM can effectively remove the transitive TF–gene interactions by considering neighborhood context and model the gene expression dynamics using high-dimensional tensors. We compared dynDeepDRIM with six GRN reconstruction methods on both simulation and four real time-course scRNA-seq data. dynDeepDRIM achieved substantially better performance than the other methods in inferring TF–gene interactions and eliminated the false positives effectively. We also applied dynDeepDRIM to annotate gene functions and found it achieved evidently better performance than the other tools due to considering the neighbor genes.
Original languageEnglish
Article numberbbac424
Number of pages10
JournalBriefings in Bioinformatics
Volume23
Issue number6
DOIs
Publication statusPublished - Nov 2022

User-Defined Keywords

  • time-course single-cell RNA sequencing
  • transitive interactions
  • gene regulatory network
  • gene functional annotation

Fingerprint

Dive into the research topics of 'dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data'. Together they form a unique fingerprint.

Cite this