Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused more than 150 million cases of infection to date and poses a serious threat to global public health. In this study, global COVID-19 data were used to examine the dynamical variations from the perspectives of immunity and contact of 84 countries across the five climate regions: tropical, arid, temperate, and cold. A new approach named Yi Hua Jie Mu is proposed to obtain the transmission rates based on the COVID-19 data between the countries with the same climate region over the Northern Hemisphere and Southern Hemisphere. Our results suggest that the COVID-19 pandemic will persist over a long period of time or enter into regular circulation in multiple periods of 1–2 years. Moreover, based on the simulated results by the COVID-19 data, it is found that the temperate and cold climate regions have higher infection rates than the tropical and arid climate regions, which indicates that climate may modulate the transmission of COVID-19. The role of the climate on the COVID-19 variations should be concluded with more data and more cautions. The non-pharmaceutical interventions still play the key role in controlling and prevention this global pandemic.
Original language | English |
---|---|
Article number | e2021GH000455 |
Number of pages | 20 |
Journal | GeoHealth |
Volume | 5 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2 Aug 2021 |
Scopus Subject Areas
- Global and Planetary Change
- Epidemiology
- Water Science and Technology
- Waste Management and Disposal
- Pollution
- Public Health, Environmental and Occupational Health
- Management, Monitoring, Policy and Law
- Health, Toxicology and Mutagenesis
User-Defined Keywords
- COVID-19 pandemic
- Koppen-Geiger climate classification
- periodic variation
- scenario analysis