Abstract
A dual quinone tagging strategy is designed for quantitation of cysteine-containing peptide (CCP) with MALDI-TOF mass spectrometry. The quinone compounds can rapidly and specifically bind to the thiol group of cysteine residues by a Michael addition reaction, which is used to identify both CCP and the number of cysteine residues in CCP through the direct observation of untagged and tagged products. After reduced with DL-dithiothreitol, the intramolecular disulfide bond can also be identified. Using benzoquinone (BQ) and methyl-p-benzoquinone (MBQ) as dual tags and a peptide with an amino acid sequence of SSDQFRPDDCT (C-pep1) as a model target, respectively, the quantitation strategy is performed through the intensity ratio of MBQ-tagged C-pep1 to BQ-tagged C-pep1 as the internal standard. The logarithm value of the intensity ratio is proportional to C-pep1 concentration in a range from 5.0 to 5000 nM. The limit of detection is as low as 2.0 nM. The proposed methodology provides a novel tool for rapid characterization, identification, and quantitation of biomolecules containing thiol reactive sites and has a promising application in the large-scale detection and analysis of cysteine-containing biomolecules.
Original language | English |
---|---|
Pages (from-to) | 8275-8280 |
Number of pages | 6 |
Journal | Analytical Chemistry |
Volume | 86 |
Issue number | 16 |
DOIs | |
Publication status | Published - 19 Aug 2014 |
Scopus Subject Areas
- Analytical Chemistry