Doubly robust estimation of average treatment effect revisited

Keli Guo, Chuyun Ye, Jun Fan, Lixing Zhu*

*Corresponding author for this work

Research output: Working paperPreprint

Abstract

The research described herewith is to re-visit the classical doubly robust estimation of average treatment effect by conducting a systematic study on the comparisons, in the sense of asymptotic efficiency, among all possible combinations of the estimated propensity score and outcome regression. To this end, we consider all nine combinations under, respectively, parametric, nonparametric and semiparametric structures. The comparisons provide useful information on when and how to efficiently utilize the model structures in practice. Further, when there is model-misspecification, either propensity score or outcome regression, we also give the corresponding comparisons. Three phenomena are observed. Firstly, when all models are correctly specified, any combination can achieve the same semiparametric efficiency bound, which coincides with the existing results of some combinations. Secondly, when the propensity score is correctly modeled and estimated, but the outcome regression is misspecified parametrically or semiparametrically, the asymptotic variance is always larger than or equal to the semiparametric efficiency bound. Thirdly, in contrast, when the propensity score is misspecified parametrically or semiparametrically, while the outcome regression is correctly modeled and estimated, the asymptotic variance is not necessarily larger than the semiparametric efficiency bound. In some cases, the "super-efficiency" phenomenon occurs. We also conduct a small numerical study.
Original languageEnglish
PublisherCornell University
Number of pages39
DOIs
Publication statusPublished - 29 May 2020

Publication series

NamearXiv

User-Defined Keywords

  • Average treatment effect
  • Doubly robust estimation
  • Misspecification
  • Semipara-metric efficiency bound

Fingerprint

Dive into the research topics of 'Doubly robust estimation of average treatment effect revisited'. Together they form a unique fingerprint.

Cite this